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The problems pertaining to a double point explosion in a gas, which were dealt with 
in [i, 2], serve as an important fragment in the problem of controlling an explosion. The 
solution here depends on two control parameters: the ratio of explosion energies I = E2~ 
El ~ and the time t o separating one explosion from the other. A powerful double explosion 
has been studied in [i], with no provision made for the counterpressure of the ambient at- 
mosphere. A numerical study was undertaken in [2] of the problem dealing with a double point 
explosion in a spherical-symmetrical formulation for a broad range of changes in pressure, 
i.e., from the powerful stage to the quasiacoustic asymptote; here studies were also under- 
taken of the unique features involved in the behavior of the solution, in dependence on the 
dimensionless time t o for a fixed value of the parameter I = i. 

In the present paper the results of [2] are generalized to the case of a cylindrical 
dual explosion, and we also examine the relationship between the solution and the parameter 
I for a fixed value of the duration t o ' between the explosions and the fixed total explosion 
energy El ~ + E2 ~ = const. 

Let us examine a cylindrical double explosion in a gas with counterpressure P0 and den- 
sity 00. The explosions correspond to the instantaneous release of energy with constant 
linear densities El ~ and E2 ~ along one and the same axis r = 0. The first explosion occurs 
at the instant of time t = -t o , with the second explosion occurring at t = 0. Viscosity 
and heat conduction have not been taken into consideration. The flow of the gas behind the 
shock waves are adiabatic, and subject to the equation of state e = p/(y - l)p for an ideal 
gas, with an adiabatic exponent ~ = 1.4. 

For the scales of time and distance we have taken t o = r~ I/2, r ~ = (E~ I/2 
(~0 = 0.984 is a self-similar constant). The original system of gasdynamic equations, de- 
scribing the cylindrical-symmetrical flows, are made dimensionless by means of the parameters 
t~ r~ P0, and P0, with the dimensionless quantities subsequently identified as prime. The 
S. K. Godunov [3] method was used numerically to solve this system of equations, and 
the unique features of the flows, i.e., the shock discontinuities, were identified. The 
unique nature of the application of this method to the problem of a double point explosion 
has been described in [i, 2]. We note that as t o § 0 the solution of the problem regarding 
the double explosion changes into a solution of the problem for a single explosion with en- 

ergy El ~ + E2 ~ 

The results from the calculations can be seen in Figs. 1-3 (~ = 1.4). Qualitatively 
the nature of the interaction between the shock waves (SW) depends on the relationship bet- 
ween the dimensionless delay time t 0' = t0/t ~ and the duration of the positive phase of the 
excess pressure in the first SW Atp'(0) = 0.15. With t o ' - Atp'(0) the second SW is propa- 
gated through the compression phase behind the first shock wave. The interaction of these 
waves here is such that one wave overtakes the other: at some distance from the axis the 
SW merge one into the other. Figure i shows the merging distance r m' as a function of 1 

' = 0.02 The function rm'(%) is obvious: for a fixed delay between the explosions, i.e., t o 
with an increase in I, r m' monotonically tends to zero. 

The interaction of the waves from the explosions of approximately equal energies I - i 
when t o ' < &tp'(0) produces a cumulative effect: an increase in the amplitude of the pres- 
sure in the merger region exhibiting a characteristic dimension on the order of the width 
of the shock peak (analogous to a spherical double explosion) and to a positive-phase pulse 
of excess pressure in the interval from r' = 0 to r' = r m' , in comparison to the single ex- 
plosion with the same total energy. When r' > r m' the momentum of the double explosion tends 
monotonically to that of a single explosion exhibiting the total energy. 
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It is physically obvious that as I + 0(~) and El ~ + Ez ~ = const the momentum of the 

positive phase for the excess pressure I~ = S (Ap'--1)dt' tends toward the momentum of the 
Atp 

single total-energy explosion for any fixed radius r' > 0. The existence of the cumulative 
effects in this case in the intermediate region I - 1 suggests the possibility of maximizing 
the momentum at the given dimensionless distance through selection of the explosion energy 
ratio ~ (with a fixed total energy El ~ + E2 ~ = const). The results from that series of cal- 
culations carried out for a fixed dimensionless delay t o ' = 0.02 (Fig. 2) confirms this. 
In Fig. 2, q = Ip+/(Ip+)sin is the ratio of the momentum of the double explosion to the mo- 
mentum of the single explosion with energy El ~ + E2 ~ = 2E ~ with points 1-3 corresponding 
to the dimensionless radius r' = 0.13, 0.15, and 0.18. We can see from Fig. 2 that the 
energy ratio (%)max, corresponding to maximum momentum, depends, generally speaking, on the 
radius r' and does not correspond to the double explosion with equal fractions of energy 
(i.e., I = i). For the delay time which we have chosen in our calculations, with an increase 
in r', (l)max increases. 

Let us examine the case in which t o ' > Atp'(0), i.e., the delay time between the explo- 
sions is greater than the time required for the formation of the negative phase behind the 
first SW. The second shock explosion will then be propagated through the rarefaction phase, 
which leads to its additional attenuation. When i ~ 1 this circumstance, as in the spherical 
case, leads to the existence of a critical delay time (to) * such that when t o > (to) ~ the se- 
cond shock'explosion cannot overtake the first. 

The distan:~e of the interaction in the second explosion with the rarefaction phases 
can be determined from the intersection of the curve At'(r ) with At D (r) and Atu~r ) in 
Fig. 3, which has been plotted for ~ = I. Here At'(r') is the time Interval (spacing) bet- 
ween the arrival of the first and second shock explosions at a given Euler coordinate; Atp' 
and At u' are the durations of the positive excess-pressure phases and the duration of the 
first SW. 

The subscripts i, 2, and 3 with At' correspond to delay times t o = At'(0) = 0.35,, 0.25, 
and 0.15. Figure 3 shows that for a cylindrical double explosion, analogous to a spherical 
explosion in the quasiacoustic stage, it is possible to have formation of double wave con- 
figurations with quasiconstant duration over some range of distances between the explosions, 
i.e., for r' e (rl' , r2') we have~(&t!(r))/dr; ' ~ i and At'(r', t o ) = T(t 0) = const. The 

887 



formation of such a configuration of explosions comes about without reference to whether 
or not the second explosion (i.e., the shock front) overtakes the first explosion on the 
asymptote or not. The amplitude of the excess pressure in the first SW at distances of r I' 
from the axis corresponds approximately to 1.0, i.e., at distances of r' > r l' the evolu- 
tion of the double wave truly corresponds to the quasiacoustic stage. 

Within the scope of approximating nonlinear acoustics it is demonstrated analytically 
in [2] that the formation of double SW configurations with constant time spacing T = const 
between the fronts is associated with the specific agreement of the amplitudes and profiles 
of the two waves at the point r' = r I' 

Thus, we can see from these calculations that for a cylindrical double explosion, as 
well as for a spherical explosion, there exists a region of control-parameter values to, 

in which the second wave, within the period of evolution from r' = 0 to r' = r1', "posi- 
tions" itself with respect to the first wave in a manner such that it becomes possible to 
form two-wave configurations with quasiconstant spacing T between the fronts. The spacing 
T and the interval Ar' = r 2' - r I' depend exclusively on % and t o and can be determined only 
as a result of a numerical solution for the problem of a double explosion. 
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MICROSCOPIC CONDITIONS FOR THE EXISTENCE 

OF RAREFACTION SHOCK WAVES IN SOLIDS 

I. A. Miklashevich and V. V. Selyavko UDC 539.8 

The existence of rarefaction shock waves in a substance near the critical point of the 
Ist kind of phase transition was predicted by Zel'dovich [i] and observed experimentally 
[2-4]. 

Let us examine the conditions for the existence of rarefaction shock waves, such as 
are associated with phase transition of the IInd kind. 

In some manner let us initiate a multilateral rarefaction wave of amplitude P in a ma- 
terial subjected to preliminary stress, said wave of rather limited width such that the time 
required for a change in pressure is smaller than the stress relaxation time within the ma- 
terial. It is assumed that the body in the solid state with expansion such that AV = V L -- 
V m (V L, V m is the volume of the body in the liquid and solid phases, respectively) makes 
the transition to the metastable state [5]. In this case, if the body remains in the solid 
phase, the new state may be amorphous [6]. With such transitions the body undergoes continu- 
ous changes of state, whereas the symmetry undergoes sudden jumps. We know that an amorphous 
structure is, in and of itself, more symmetrical than any ordered structure. The process 
involved in the formation of a new structure under the action of a rarefaction wave proceeds 
through a series of intermediate structures whose crystallographic symmetry covers more than 
230 spatial groups [7], i.e., the transition process is represented by a sequence of states 
with ever-broader classes of symmetry. The conclusion of this process is found in the tran- 
sition of the material into a fully amorphous state (a phase transition of the IInd kind 
[8]). 
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